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Engineering the Internet 

•  understanding the relation between demand, capacity and 
performance 

•  to design a cost efficient network that satisfies quality of 
service requirements 
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From connecting endpoints to content delivery 

•  96% of traffic is content 
–  web, file sharing, social networks, video streaming,... 

•  demand depends on content placement 
–  caching realizes a memory for bandwidth trade-off 
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•  96% of traffic is content 
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•  demand depends on content placement 
–  caching realizes a memory for bandwidth trade-off 

•  caching “at the edge” brings the optimal trade-off 
–  but where is the edge? 



From connecting endpoints to content delivery 
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•  96% of traffic is content 
–  web, file sharing, social networks, video streaming,... 

•  demand depends on content placement 
–  caching realizes a memory for bandwidth trade-off 

•  caching “at the edge” brings the optimal trade-off 
–  but where is the edge? 

•  QoS (latency, throughput) is not an issue 
–  made equally good by adequate sizing 



An optimal memory-bandwidth trade-off 

•  preferred cache size depends on overall cost of memory (cache 
capacity) and bandwidth (including routers) 
–  more memory means less traffic and therefore less bandwidth 
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An optimal memory-bandwidth trade-off 

•  preferred cache size depends on overall cost of memory (cache 
capacity) and bandwidth (including routers) 
–  more memory means less traffic and therefore less bandwidth 

•  an infrastructure provider (bandwidth and storage) would seek 
to optimize the trade-off 
–  but must do this in a complex business environment 
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The content delivery business 

•  since the birth of the web, ISPs have unsuccessfully sought to 
realize a favourable memory for bandwidth trade-off 

•  instead, most content is delivered using overlay content delivery 
networks (eg, Akamai, but also Google, Facebook, Netflix,...) 

•  who optimize their own costs and performance while preserving 
their profitable business models 



Outline 

1.  cache hit rate performance 
2.  optimizing the memory bandwidth trade-off 
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Internet content mix 

•  Cisco VNI: "96% of traffic is content transfer" 
•  web, file sharing, user generated content, video on demand, 

social networks 
•  billions of objects, petabytes of content! 

objects size volume share 
web 1011 10 KB 1 PB 17% 

file sharing 105 10 GB 1 PB 3% 
UGC 108 10 MB 1 PB 11% 
VoD 104 100 MB 1 TB 47% 
...   

(NB. very rough, order of magnitude estimates) 



Content popularity 

•  popularity is measured by request arrival rate per byte 
–  eg, chunk downloads by BitTorrent peers 

•  measurements reveal popularity decreases as a power law: 
–  request rate of nth most popular chunk ∝ 1/nα
–  a generalized Zipf law; typically, α ≈ 0.8 
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Content popularity 

•  cache performance depends significantly on catalogue size 
•  our guesstimates 

–  1 PB for all content (YouTube, web, social networks, P2P, ...) 
–  1 TB for a VoD catalogue 
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Content popularity 

•  cache performance depends significantly on catalogue size 
•  our guesstimates 

–  1 PB for all content (YouTube, web, social networks, P2P, ...) 
–  1 TB for a VoD catalogue 

•  for illustration, assume Zipf(.8) popularity 
–  qi ∝ 1 / i.8 and ∑1≤i≤N

 qi = 1,  
–  N and chunk size set so catalogue size is 1 TB or 1 PB  
–  (for large systems, performance depends on catalogue size in bytes 

and not on chunk or object size) 
•  the independent reference model (IRM) 

–  request is for i with probability qi independently of all past requests 
–  as if requests occur as stationary Poisson streams of rate qi 



Hit rate and cache policy – stationary demand 

•  “ideal” cache 
–  cache holds most popular items  
–  hit rate, h(C,N) = ∑i≤C qi  
             ≈ (C/N)(1-α) = h(C/N) 

•  least recently used (LRU) 
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•  “ideal” cache 
–  cache holds most popular items  
–  hit rate, h(C,N) = ∑i≤C qi  
             ≈ (C/N)(1-α) = h(C/N) 

•  least recently used (LRU) 
–  “characteristic time” approx. 
    hi = 1 – exp(-qitc) where tc     
    satisfies   C = ∑ hi  and 
      h = ∑i≤N qi hi 

 



Characteristic time approximation 
(Che, Tung and Wang, 2002) 

•  "characteristic time" TC is time for C different objects to be 
requested 

•  assume random variable TC is approximately deterministic, TC ∼ tC 

•  then, hit rate for object n is    hi = 1 − exp(−qitC) 
•  now,    C = ∑i 1{object i is in cache} 
•  taking expectations,   C = ∑i hi = ∑i (1 − exp(−qitC)) 
•  solving numerically for tC yields hi 

•  approximation justified in (Fricker et al, 2012) 
 

           
* R. Fagin. 1977. Asymptotic Miss Ratios over Independent References.  
J. Comput. System Sci. 14, 2 (1977), 222–250. 
(thanks to Christian Berthet) 
 

The “Fagin approximation”, 1977 * 



Hit rate and cache policy – stationary demand 

•  “ideal” cache 
–  cache holds most popular items  
–  hit rate, h(C,N) = ∑i≤C qi  
             ≈ (C/N)(1-α) = h(C/N) 

•  least recently used (LRU) 
–  “characteristic time” approx. 
    hi = 1 – exp(-qitc) where tc     
    satisfies   C = ∑ hi 

–  a significant performance 
penalty for small caches 
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Hit rate and cache policy – stationary demand 

•  cache with “pre-filter”  
–  on cache miss, only add new 

item if included in previous K 
requests 

–  hi
(n+1) = (1 – exp(-qitc)) ×  

          (hi
(n) + (1-hi

(n))(1 – (1-qi)K)) 
–  where hi

(n) is hit rate of nth 
request for item i  

–  for stationary demand hi
(n+1) = 

hi
(n) = hi, C = ∑ hi yields tc 

•  but pre-filters slow reactivity 
to popularity changes ... 
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Time varying popularity 

•  many items are short-lived, cf. [Traverso 2013] 
–  we assume the most popular have shortest lifetimes 

•  IRM assumption is not appropriate when demand is low 
–  eg, the first request for a new item is necessarily a miss 

lifetime interval proportion 
of items 

mean 
lifetime 

0-2 days .5 % 1.1 days 
2-5 days .8 % 3.3 days 
5-8 days .5 % 6.4 days 
8-13 days .8 % 10.6 days 

> 13 days (or < 10 
reqs) 

97.4 % 1 year 



Hit rates with finite lifetimes 

•  model after [Wolman 1999]: item i always has popularity qi but 
changes after each lifetime 

•  LRU hit rate with mean item lifetime τi 
–  first request after change must miss 
–  hi = (1 – exp(-qitc)) × (qiτi / (1 + qiτi)) 

•  LRU hit rate with pre-filter 
–  recall: hi

(n+1) = (1 – exp(-qitc)) × (hi
(n) + (1-hi

(n))(1 – (1-qi)K))          (∗) 
–  assume item i changes after nth request with probability 1 – ηi where  
    ηi = qiτi / (1 + qiτi) 
–  then,  hi = hi

(1) (1 – ηi) + hi
(2) ηi (1 – ηi) + hi

(3) ηi
2 (1 – ηi) + ⋅⋅⋅ 

–  multiply (∗) by ηi
n and add eventually yields hi 



Impact of time-varying popularity 

•  hit rate depends on demand since first requests in lifetime 
always miss (first for LRU, first 2 for LRU with pre-filter) 

full capacity 
(C=N) 



Impact of time-varying popularity 

•  hit rate depends on demand since first requests in lifetime 
always miss (first for LRU, first 2 for LRU with pre-filter) 

C=N/10 
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Application to access network 

AN, 1 TB AN, 1 PB 
CO, 1 TB CO, 1 PB 

2 Gb/s 
peak x100 

content: 
1 TB  
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Implications 

 
 
•  we need proactive caching at AN and below (eg base stations) 

–  ie, network must proactively upload the most popular items  
•  proactive caching needs some function to predict popularity 

–  by being informed of requests from a large user population 
–  and applying data analytics... 

•  content providers can measure popularity, ISPs typically can’t 
–  user preference data is highly sensitive and jealously guarded 
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Outline 

1.  cache hit rate performance 
2.  optimizing the memory bandwidth trade-off 
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Evaluating the trade-off 

•  cache at Central Office (~200 Gb/s) or Access Node (~2 Gb/s)  
•  caches have ideal performance (eg, proactive or pre-filter) 
•  popularity is Zipf(.8) with a catalogue of 1 TB or 1 PB 
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Evaluating the trade-off 

•  overall cost of cache and bandwidth is 
–  Δ(C) = Kb(T×(1-h(C))) + Km(C) 
–  where T is download traffic, h(C) is hit rate,  
    Kb(D) and Km(C) are cost functions for demand D and cache C 

•  to simplify, assume linear cost functions 
–  Kb(D) = kb×D,   Km(C) = km×C 
–  where kb and km are marginal costs of bandwidth and memory 

•  consider normalized cost δ(c) for relative cache size c = C/N 
–  δ(c) = Δ(C)/kmN = Γ×(1-h(c)) + c     (ie,  δ(1) = 1 and δ(0) = Γ ) 
–  where  Γ = kbT/kmN is ratio of max bandwidth cost to max cache cost 
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Normalized cost 

•  Δ(C) is combined cost of memory and bandwidth 
•  Δ(C) = Kb(T×(1-h(C,N))) + Km(C) 
             = kb ×T×(1-h(C,N)) + km C  
•  let δ(c) = Δ(C)/kmN  and write h(C,N) = h(C/N) = h(c) 
•  δ(c) is combined cost normalized by maximum storage cost 
•  δ(c) = kbT / kmN × (1-h(c)) + c  
            = Γ (1-h(c)) + c  where 
•     Γ =  kbT / kmN  =  max bandwidth cost / max cache cost 

•  optimal trade-off maximizes Δ(C) and δ(c)  
 



Normalized cost v normalized cache size 

•  normalized cost δ(c) = Γ×(1-h(c)) + c = Γ×(1-c0.2) + c  
•  where Γ = kbT/kmN is max bandwidth cost / max cache cost 
•  if Γ ≥ 5, max cache is optimal (c=1, ie, C=N) 
•  if Γ < 5, there is optimal cache size for 0<c<1  

–  eg, for Γ = .1, min cost for c=.008, h(c)=.37 for gain ≈ 30% 
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Cost and demand guesstimates 

•  cost of bandwidth: kb = $2 per Mb/s per month 
•  cost of memory: km = $.03 per GB per month 
•  if N = 1 PB and T = 200 Gb/s, Γ = kbT/kmN ≈ 13 (CO, large N) 
•  if N = 1 PB and T = 2 Gb/s, Γ ≈ .13 (AN, large N) 
•  if N = 1 TB and T = 2 Gb/s, Γ ≈ 130 (AN, small N) 
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Remarks on trade-off 

•  key factor is Γ = Tkb / Nkm  where N is catalogue size 
–  Γ = max bandwidth cost / max storage cost 

•  eg, trade-off is favourable at CO – ie, cache all  
–  (except for lowest popularity items excluded in Zipf approx) 

•  eg, trade-off at AN is optimal if N = 1 PB at cache size ~30 TB  
–  40% hit rate, ~30% cost reduction over no cache  

•  realizing the optimal trade-off relies on CP cooperation 
–  pushing the right amount of most popular contents to cache  
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Realizing the optimal trade-off 

•  in a 2-sided market, CPs have no cost incentive place content to 
optimize ISP infrastructure 
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Optimal placement: CPs have the data but are 
hardly motivated in a 2-sided market 

•  CPs (eg, Akamai, Facebook, YouTube, Netflix) have highly 
profitable business models based on exclusive knowledge of 
customer usage  
–  ad placement, recommendations, billing, marketing data, ... 

•  transparent caching by ISP is not an option 
–  CPs need to track demand and control delivery  
–  CPs know content popularity and don’t want anyone else to know 

•  CPs can decide content placement but, as the subsidy side of a 
2-sided market, have no incentive to optimize ISP investments 
–  they currently do not pay ISPs for the cost of their traffic  
–  they do install their own caches in the ISP (eg, Google Global 

Cache) but their economic motivation is different 



Price subsidies for an optimal trade-off 

•  ISP advertises cost functions, Kb(T) and Km(C)  
•  charges CP Pcp(T) for traffic T without cache (C = 0) 

–  where 0 ≤ Pcp(T) ≤ Kb(T), depending on negotiation 

•  cost with cache C, Δ(C) = Km(C) + Kb(T (1-h(C))) yielding gain Gcp(C,T) 
–  Gcp(C,T) = Kb(T) - Km(C) - Kb(T (1-h(C))) 

•  a subsidy α Gcp (C,T) for some α (0 < α < 1) incites CP to optimize 
trade-off, yielding ISP gain (1 - α) Gcp 
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A workable solution? 

•  CPs currently pay varying amounts to ISPs, sometimes zero and 
never the full cost of their traffic 
–  ISPs can play on performance to “extort” payment (cf. Comcast 

versus Netflix in 2014) but not to optimize content placement 
•  the memory for bandwidth subsidy proposal is mainly orthogonal 

to this 2-sided market negotiation 
–  more favourable to high demand, small catalogue CPs (eg, Netflix) 
–  but network neutral, transparent pricing 

•  ISP may not like paying CPs but subsidies are a win-win solution 
–  both gain, it remains to decide the best sharing ratio (α : 1- α)  

•  more complex pricing is needed to optimize content placement 
downstream of the access node (eg, in 5G base stations) 
–  work in progress ... 



Summary 

•  understanding the relation between demand, capacity and 
performance, for a cost-effective infrastructure 

•  to evaluate the memory for bandwidth trade-off and optimize 
the cost of infrastructure 
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Summary 

•  a complex business environment  
–  where content providers (Akamai, Google, Netflix,...) have acquired 

expertise and need to conserve their advantageous business models 
–  as the subsidy side of a 2-sided market 

•  to realize the optimal trade-off, ISP must further subsidize CPs 
for their content placement decisions 
–  pricing such that subsidy is maximal for the optimal trade-off  

pay for content 

pay for  
connectivity 

users content providers 

ISP 

pays for  
placement 


